4.4, 4.5 HW MS

1. (a) nucleophilic addition

(b) (i) 2-hydroxybutanenitrile 1

(allow 1 for amide even if not $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{NO}$, i.e. RCONH_{2}) (if not amide, allow one for any isomer of $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{NO}$ which shows geometric isomerism)
(c) (i)

COOCH_{3}

2. (a) (i) 2, 3-dimethylbutan - 2 - ol (1)
(ii) elimination (1)

Mechanism
(1)

$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \longleftarrow\left(\mathrm{CH}_{3}\right)_{2} \stackrel{\left.+()^{\mathrm{C}} \stackrel{\mathrm{H}}{\square} \stackrel{+}{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{2}\right)}{ }$
(1)
(iii) Structure

Name of isomer 2, 3 - dimethylbut - 1 - ene (1)
Explanation loss of H^{+}or H (1) from end C also possible (1)
(b) (i) Equation

Name of mechanism addition - elimination (1)
Mechanism

allow loss of H^{+}here

(ii) Type of reaction esterification (1)

Reagent(s) $\quad \mathrm{CH}_{3} \mathrm{COOH}$ or ethanoic acid (1)
Conditions strong acid catalyst (1)
3. (a) (i) propyl methanoate (1)
not propanyl

- A wrong reagent or no reagent scores zero
- An incomplete reagent such as silver nitrate for Tollens, or potassium dichromate loses the reagent mark, but can get both observation marks
- penalise observations which just say colour change occurs or only state starting colour
(ii) Reagent: $\mathrm{NaHCO}_{3}(\mathbf{1})$

Observation with C: no reaction (1)
Observation with \boldsymbol{D} : effervescence (1)
for \boldsymbol{C} and \boldsymbol{D} NOT Tollens

Test	an identified (hydrogen) carbonate	acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	acidified KMnO_{4}	correct metal	UI or stated indicator	PCl_{5}
Observation with \mathbf{C}	no reaction	goes green	goes colourless	no reaction	no change	no reaction
observation with \mathbf{D}	bubbles or CO_{2}	no change	no change	bubbles or H_{2}	red or correct colour $\mathrm{pH} 3-6.9$	(misty) fumes

(b) (i) Reagent: pentan-2-one (1)
or 2-pentanone
but not pent-2-one or pentyl
(ii) Reagent: Tollen's or Fehling's (1)

Observation with \boldsymbol{E} : no reaction (1)
Observation with \mathbf{F} : silver mirror or red ppt (1)
for \mathbf{E} and \mathbf{F}

Test	Tollens	Fehlings or Benedicts	iodoform or $\mathrm{I}_{2} / \mathrm{NaOH}$	acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	Schiff's
observation with E	no reaction	no reaction	yellow (ppt)	no change	no reaction
observation with F	silver or mirror or grey or ppt	red or ppt not red solution	no reaction	goes green	goes pink

(c)

(1)
must be aldehyde. Allow $\mathrm{C}_{2} \mathrm{H}_{5}$ for $\mathrm{CH}_{3} \mathrm{CH}_{2}$ otherwise this is the only answer
4. (a) (i) B: propanoyl chloride (or consequentially on part (a) (ii)) (1)

C: propanoic anhydride (or consequentially on part (a) (ii)) (1) do not allow formulae
(ii) effervescence / misty fumes / steamy fumes / fumes / solution becomes warm / fizzing not just gas (1)
(iii)

(1)
(the minimum necessary for the mark is $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}-\mathrm{N}$ shown)
(iv) $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}\right)_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ (1)
allow $\mathrm{C}_{2} \mathrm{H}_{5} \ldots$.
(b) (i) methanol (1)
methyl propanoate (or consequentially on part (a) (ii)) (1)
do not allow formulae
(ii) A: in presence of (concentrated) sulphuric acid
/ $\mathrm{H}_{2} \mathrm{SO}_{4}$ / strong acid / gaseous hydrogen chloride or HCl
allow dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ (1)
heat / reflux (but only if first mark awarded) (1)
allow 1 mark for acidic conditions / $\mathrm{H}+$ and heat
B: room temperature / in the cold / not heated / cooling not acid (1)
C: heat / reflux not acid (1)
5. (a) (i)

(ii) ester (1)
solvent, flavourings (1)
(iii) conc $\wedge \mathrm{H}_{2} \mathrm{SO}_{4}$ (1)
in same physical state (1) 6
(b) $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}+6 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}$ (1) 1
(c) (i)

(1)

(1)

$$
\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}
$$

(ii) two H on carbon in double bond (1)
(iii)

$$
\text { cis but-2-ene (1) trans but-2-ene } 7
$$

6. (a) Reagents
$\mathrm{NaBH}_{4}(\mathbf{1})$
Type of reaction reduction (1)
(b) (i) Reagents(s) $\quad \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}(\mathbf{1}) \mathrm{H}_{2} \mathrm{SO}_{4}$ (1)

Conditions reflux (1)
(ii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+2[\mathrm{O}] \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O}$ (1) 4
(c) Reagents

HCN or $\mathrm{NaCN} / \mathrm{H}^{+}$(1)
Name of mechanism nucleophilic \cap addition (1)
(d) (i) mirror images (1)
(ii) plane polarized light (1)
rotated in opposite directions (1)
(e) (i) Structure

Name

propyl propanoate (1)
(ii)

(1)
(f) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}$ or $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}+4 \mathrm{O}_{2}{ }^{(\mathbf{1})} \rightarrow 3 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ (1)
7. (a) (i) correct graphical formula for tertiary alcohol allow CH_{3} not $\mathrm{C}_{2} \mathrm{H}_{5}(\mathbf{1})$
2-methylbutan-2-ol / 2-hydroxy-2-methylbutane / 2-methyl-2-hydroxybutane award name mark even if it follows incorrect formula (1)
(ii) graphical formula of pent-1-ene (1)
graphical formula of pent-2-ene (1)
accept geometrical isomers of pent-2-ene if clearly shown to be different
(iii) dehydration / elimination (1)
(iv) no H atoms on C atom next to $\mathrm{C}-\mathrm{OH} /$ three methyl groups on C (1) 1
(b) (i) ethanenitrile / ethanonitrile / methyl cyanide /
cyanomethane / acetonitrile (1)
(ii) any hydrolysis (1) 1
(iii) $\mathrm{CH}_{3} \mathrm{COCl}+\mathrm{CH}_{3} \mathrm{NH}_{2}{ }^{\circledR} \mathrm{CH}_{3} \mathrm{CONHCH}_{3}+\mathrm{HCl}$
for correct formula of methylamine / HCl product (1)
overall correct (1)
8. (a) $\mathrm{NaBH}_{4} \mathbf{(1)} 1$
(b) nucleophilic ${ }^{\wedge}$ addition (1)

(1) (1)

5
(c) (i) hexanedioic acid (1)
(ii) $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O} \quad \rightarrow \quad \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4}$
$\mathrm{Mr}=98$ (1) $\quad \mathrm{Mr}=146$ (1)
$2.40 \mathrm{~g} \quad \rightarrow \quad \frac{2.40}{98} \times 146=3.58 \mathrm{~g}(\mathbf{1})$
9. (a) (i) ethyl ethanoate

(1)

2
(ii) esterification / condensation / addition - elimination (1) 1
(b) (i) aqueous / dilute sulphuric / hydrochloric acid (allow $\mathrm{HCl}(\mathrm{aq}) ; \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ not water) (1)
temp. $<100^{\circ}$ / warm / heat / reflux (this mark dependent on sensible reagent) (1)
(ii) $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(allow $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}, \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$ but must have $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$) (1)
(c) (i) sodium hydroxide / sodium carbonate / sodium hydrogen carbonate (allow formula) (1) room temperature / aqueous (2nd mark dependent on correct reagent) (1)2
(ii) ethanoic anhydride

(1)
(methyl groups can be shown as $-\mathrm{CH}_{3}$ but the $\mathrm{C}-\mathrm{C}$ bond must be drawn)
(iii) addition of water / hydrolysis (1)
$\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{CH}_{3} \mathrm{COOH}$ (1)
(d) (i) ethanamide not ethylamide.

(1)
(ii) ammonia (not if dilute implied) / ammonium carbonate $/ \mathrm{PCl}_{5}$ followed by NH_{3} (allow formulae) (1)
heat or temperature $<100^{\circ}$ (1)
(iii) $\mathrm{CH}_{3} \mathrm{CONH}_{2}+\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NH}_{4} \mathrm{Cl}$ (1)
10. (a) (i) An appropriate alkene; $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHCH}_{2}$ or $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CCH}_{2}$ 1
Isomer 1 1
Isomer 2 1
Position isomerism 1
Mechanism
electrophilic attack and electron shift to Br (Unless H^{+}used) 1
carbocation 1
reaction with carbocation 1
[Allow mechanism marks for the alkene $\mathrm{CH}_{3} \mathrm{CHCHCH}_{3}$]
[Allow one mark if mechanism for minor product given]
(ii) An appropriate carbonyl; $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$ 1
Mechanism nucleophilic attack and electron shift to O 1
anion intermediate 1
reaction with anion 1[Allow mechanism marks for the carbonyl $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$]
Isomer 1 1
Isomer 2 1
Optical isomerism 1
NB Isomer structures must be tetrahedralNB Penalise "stick" structures once in part (a)
(b) QoL Large charge on carbonyl carbon atom due to bonding to O and Cl 1
Nucleophiles have electron pairs which can be donated 1
Equation Species 1
Balanced 1

